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1. INTRODUCTION AND SUMMARY

Two measures of the relative performance of satellite based data

collection and location systems are the precision with which platforms can be

located (and/or their velocity estimated) and system capacity (average bit rate

handled by the satellite). This report investigates two concepts whereby im-
provements in location precision and system capacity can be achieved relative

to current systems. One of these concepts (TRILOC) can provide-either or both

improvements in location and system capacity by utilizing three measurements

acquired during a single transmission from a platform for location purposes.

The other concept is to increase system capacity by means of directive antennas

on board the satellite for the purpose of reducing interference (either between

platforms or from RFI) and/or reducing platform power.

e TRILOC concept is evaluated in Section 2. The location algorithm

?. is developed assuming ange-rate, radial-acceleration, and range differences

are measured on-board the satellite during a transmission from a platform. A-.

error analysis of this algorithm is then derived from which platform location

errors are related to the precision with which the three measurements are made.

An example TRILOC processor is then postulatedlto gesta te he threemeasure-

ment precisions., / .. .

Particular conclusions related to the TRILOC concept ca be summ-
arized as follows

* If all measurements contribute equally to the precision

of the location estimate, the improvement in location

precision is basically due to a. greater number of measure-

ments being available for noise suppression rather than

an inherent advantage associated with combinations of
different types of measurement.



* From the analysis of the example TRILOC processor,

the errors in measuring radial acceleration cause much

larger location errors than either measurements of

range-rate or range difference.

* The value of range rate and radial acceleration measure-

ments decrease rapidly with increased satellite altitude

(e. g. from a two to three hour period) while the value of

range difference measurements does not change appreci-

ably.

An overall characteristic of a TRILOC system is the opportunity to

improve location precision without sacrificing system capacity or alternatively,

to increase system capacity without degrading location precision. If system

capacity is dominant, then the acquisition of three measurements of location

parameters during a single transmission provides a nearly threefold increase in

system capacity compared to current data collection and location systems. On

the other hand, if precise location is most important, then the additional loca-

tion parameter measurements acquired during each transmission can be utilized

to improve location accuracy without reducing system capacity of current

systems.

The potential advantages and disadvantages of both sweeping and

fixed directive antennas on-board the satellite for random access systems are

analyzed in Section 3 . These analyses indicate that there is no advantage

(and probably only disadvantages) in having a sweeping antenna on-board the

satellite compared to multiple directive antennas from either a performance or a

system capacity viewpoint. This conclusion is based upon a necessary in-

crease in mutual interference between platform transmissions as the gain of

a sweeping antenna increases. However, directive antennas do offer advantages

in system capacity improvement by decreasing interference, platform power

reduction, and/or RFI suppression.
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To achieve the advantages of the directive antennas, the beams must

be of elliptical cross section and maintained in orientation relative to the

satellite's direction of motion. In particular, the major axes of the beams

must be parallel to the satellite's sub-track and be able to receive trans-

missions from platforms from one edge of the satellite's visibility circle to

the other. System capacity will be directly proportional to the number of

these beams (from an interference standpoint) that are used to completely

illiminate the visibility circle-i.e. the minor axes of the beams determine

the number of beams required and also the improvement factor.

To determine antenna size, the minor axis of the beams and

operating frequency must be specified. To estimate required sizes for a

low altitude satellite (Nimbus or TIROS), a synthetic aperature or array is

assumed at an operating frequency of 400 MHz. This leads to the approxi-

mate relationship that the maximum antennadimension in meters is about .32

times the number of beams.
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2. TRILOC CONCEPT

2.1 Position Determination

The bases for satellite referenced location systems is the accurate

knowledge of satellite position and velocity throughout its orbit and the ability

to measure range or range rate between the satellite and the platform to be
located. For example, in the case of the IRLS system, range is measured at

two points during an overpass of the satellite. At each point, this measured

range plus known satellite position establishes a sphere centered at the

satellite upon which the platform is known to lie. Assuming the platform lies
on the earth's surface, then the two range spheres and the earth's surface have

two points of simultaneous intersection-one of which corresponds to the geo-

graphic coordinates of the platform.

An entirely analogous location technique is that utilized by the RAMS

system. Here, the measured quantity between satellite and platform is range-
rate which give rise to cones with apexes at the satellite (instead of spheres).

The location is accomplished in the same manner, however, by determining the
two points of simultaneous intersection of two cones and the earth's surface.
A third example is the TRANSIT navigation system that measures the differences
in range between satellite and platform to estimate location.

( The TRILOC concept is to measure not us range (or ran e-dffer-
I ence), or rane-r but to measure both of these quant es anradial acceleratlo

duriog any single transmission from a platform. For example, if range and range-
rate were measured during a single transmission from a platform, then its loca-

, tion could be estimated by determining the two points of simultaneous intersection
Sof a sphere. (range), a cone (range-rate) and the earth's surface (assumed
: altitude of the platform). Based on this alone then, addition of a range measure-

: \ment during each transmission of a RAMS platform would effectively halve the
number of transmissions required for location purposes.
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As mentioned, radial acceleration is also capable of being measured

and is as equally useful as range or range-rate for location purposes. In this

case, the geometric surface upon which the platform is known to lie can be

shown to be shaped like a doughnut with no center hole and whose center is

at the satellite's position when the measurement is made.

Conceptually then, as many as three measurements could be obtained

from a single platform transmission for purposes of location. Whether this is

possible, particularly, in the case of the range measurement, depends upon the

communication link between the satellite and platform-i.e., range measurement

requires a two way link, as in the IRLS system. On the other hand, measurement

of range difference between two transmission points can be accomplished with

one way communication links.

2.2 Position and Velocity Determination

The above discussions indicate platform position can be determined

with at most half the number of platform transmissions of current location sys-

tems by utilizing the TRILOC concept. The more general need, however,

(particularly when increased precision of location is required) is the ability to

estimate platform velocity as well as location. Furthermore, precise location

requires correction for center frequency drift and perhaps drift rate during a

satellite overpass. Instead of two measurements being required, then, precise

location probably requires four to six measurements during an overpass (if not

more to permit noise suppression filtering). Because three measurements are

acquired for each transmission received in a TRILOC system, the necessary four

to six measurements can be obtained with as few as two transmissions per over-

pass. Therefore, implementation of the TRILOC concept can result in a factor

of three reduction in number of transmissions required per overpass.
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2.3 Location/Velocity Estimation

-- . While a geometric interpretation of satellite-referenced location

cilitates description of the TRILOC concept, the actual method of deriving

' location and velocity estimates is accomplished in a different manner. This

will be described first by limiting discussion to a system ignoring platform

velocity and relying solely on range measurements to estimate location.

Secondly, the description will be extended to a TRILOC system ignoring platform

velocity. These discussions will then be used as the basis for describing

a TRILOQ system estimating position and velocity while correcting for

long term drift in platform transmitted frequency.

2.3.1 Range Measurement Location

If two measurements of range between the satellite and platform are

obtained, the above discussions indicate the location of the platform to be one

of two points of simultaneous intersection between two range-spheres and the

earth's surface. Another way to establish the platforms location is to compute,

a priori, for each possible location of the platform the two corresponding values

of range that would have been measured if, in fact,, the platform were at that

location. When the actual pair of range measurements is acquired, -the location

of the platform can then be determined by matching the measured pair to a com-

puted pair. Note, except for a usually resolveable ambiguity, only one of the

computed pair will match the measured pair.

Actually the necessity to pre-compute all possible pairs of range

measurements isn't necessary if the following procedure is followed. First,

establish an estimate of the geographic coordinates of the platform (X, Y).

This estimate can be as crude as requiring the position to be within view of the

satellite when both of the range measurements are made. Secondly, for this

estimated position and the position of the satellite when the actual range mea-

surement were made, compute the pair of measured ranges that would have

occurred if the estimated location were correct. These will of course differ from

the measured ranges-unless the guessed location is correct.

2-3
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The difference between the measured and computed ranges are then

used to correct the X,Y estimate of platform location to more closely correspond

to the actual platform location. This is accomplished by equating the difference
in each case to the sum of two terms. One of these terms is that portion of the

(measured-computed)range difference occurring because the guess of the X
coordinate is in error and the other term is the increment caused by the error
in the estimated Y coordinate of the platform. Symbolically, this may be
written as

where 6x and 6 y are the errors in the X and Y estimates of platform location

AX is the difference in(measured minus computed)range that

will occur at the first measurement point if the position

estimate were in error by &X

(AR./Y), (Re/AX) ---- analogous to (ARI/AX)

(4AI) 6X ts that portion of(RI measured - Rcomputed)caused by a 6X error

in estimating the X coordinate of platform location.

However, if these two equations are solved simultaneously for 6X and
6Y and these values are used to correct the original X,Y estimate of platform loca-
tion,then the result will be a better estimate if not the actual location of the platform.

An important extension of this type of solution process concerns those
conditions wherein the number of range measurements is greater than two-
i.e., the number of measurements is greater than the number of unknowns. If
there are no errors present in the range measurements or satellite position,
such redundant measurements cannot of course serve any purpose. However,
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with errors present, redundant measurements can be utilized to suppress the. --

effects of the errors provided they are random with negligible bias. This is

accomplished by forming a sum of the squares of the differences between

measured and computed (i.e., based on estimated location) ranges at each

measurement point and then determining the location of the platform that

minimizes this sum. Por the case where the errors are normally distributed,

this process can be shown to decrease the error in locating the platform in

proportion to the reciprocal of the square root of the number of measurements.

2.3.2 TRILOC Location

Analogous to the above, assume a TRILOC system acquires range and

range-rate measurements between the satellite and platform. For the case where

two measurements are acquired, the location process described above for a two

range-measurement process is equally applicable. However, the extension •

to the redundant measurement solution is not quite as straight forward.

In the case with redundant measurements of the same type(-i..e.,

all range or all range-rate) minimizing the sum of the squares of measured

minus computed difference is conceptually. valid. However, for the case

where different measurements are involved(-e.g., range and range-rate-)

minimizing the algebraic sum of the squares of differences is not valid without

assigning relative weights to the different measurements,let alone adjusting

units to make the sum meaningful.

One means of accomplishing this weighting of the different measurements

is to divide each difference by the standard deviation of the error for that measure-

ment. This will, in effect, magnify those differences that c'orrespond to low

error measurements relative.to those of high error-additionally, the sum of the

squares of these quotients becomes the sum of non-dimensional terms-i.e.,

compatible units. This enhancement of the more precise measurement differ-

ences serves to drive the location solution to that indicated by these measurements
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Note this also means that when the standard deviation of one type of measure-

ment error is large relative to others, then this measurement is effectively

ignored in the solution process. This can be seen in the data presented in

Figure 1.

Figure 1 is a presentation of the errors in measuring range differ-

ence between successive transmissions from a platform, range rate, and

acceleration normalized by the resulting mean location error-i.e., the average

magnitude of the location error. A basic assumption utilized to develop these

data is that the measurement errors are normally distributed with zero mean.

Furthermore, there are no errors present except the measurement errors.

These data correspond to a satellite orbit similar to the Nimbus spacecraft.

Additionally, the measurements are acquired over two successive overpasses of

the satellite wherein the transmissions are separated by five minutes. The

geometry of the overpass is such that the sub-tracks are evenly spaced to each

side of the platform and under these conditions, a total of 3 transmissions are

received on each overpass. Note, this means a total of 3 measurements of

range-rate and acceleration are received per overpass,but only 2 measurements

of range difference are obtained,for a total of 8 measurements per overpass.

The first point of interest for these data are the asymptotes noted in

Figure 1. These boundaries correspond to the condition wherein the contribution

of two of the three measurements to the location estimate are ignored because

the standard deviations for these measurements are large relative to the third.

Note, the asymptote for large errors in range difference and range-rate cannot

be shown in Figure 1. For example, if the standard deviations of range-rate

and acceleration are large, then the standard deviation of range difference

measurements establishes location error - i.e., mean location = GAR/.56.

Similarly, if range difference and acceleration errors are large, then the loca-

tion error boundary ils qR/3.48* 10 - 3

A more important result obtainable from Figure 1 however, is the re-

duction in mean location error when both range difference and range-rate

measurements are used-assuming acceleration is not used.
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To demonstrate the advantage, assume aAR is equal to .56 kilometers

and A* is equal to 3.48 meters/second. For the asymptotes discussed above,

the mean location error, pLOC' for systems using one or the other of range-rate

or range difference measurements is found from:

* Range-rate-the asymptote is described by

SCr/LOC = .00348 per second. With (R equal to

.'3.48 meters/second, yLOC is then 3.48/.00348 or

1 kilometer.

* Range-difference-the asymptote is described by

/ARILOC = .56. With a R equal to .56 kilometers,

MLOC is then .56/.56 or 1 kilometer.

To determine the mean location error when both measurements are used simul- *

taneously, manipulation of the data provided in Figure 1 is necessary.

With a R and a fixed at .56 kilometers and 3.48 meters/second and

with a large (or ignored), the point on Figure 1 that establishes mean loca-

tion error is the intersection of two lines. One of these lines is the o = Co

line of Figure 1. The other line is one which must be drawn and is that line

along which the ratio between aR and %R is a constant-in this case, 0AR/
* = .56/.00348 ,- 160 seconds. This line is sketched on Figure 1 and the

intersection between this line and the a. = co line is noted by the symbol ' .

At this point, the ordinate and abcissa are,:

ordinate - AR/ LOC .75

abcis sa - 0/ LOC = 4.6 per second

with either the .56 value of a or the 3.48 value of ao, the mean location

error is then determined to be about .75 kilometers.
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In the asymptotic case using range-rate measurements, a total of

six measurements acquired during two successive overpasses are used. By
adding the range difference measurements, of which there are four, there is a

total of ten measurements being utilized. If the assumption is made that the

reciprocal of the square root of the number of measurements determines location

error, then the location error would be one kilometer divided by the square root

of 10/6 or .77 kilometers. Because this is nearly equal to the .75 kilometer

error derived from Figure 1, this indicates that the number of measurements is

the major cause of error reductiqn instead of an inherent advantage associated

with different types of measurements. However, it should be noted that if the

number of transmissions from a platform are fixed, then the location precision

is improved because of the multiple measurements acquired during each

transmission.

As another example, the location error resulting when all three

measurements are used can be determined in a manner analogous to the above.

The assumption is again made that each measurement has a standard deviation

of error such that if it alone were used for location, the mean location error

would be 1 kilometer. The standard deviation of the acceleration error is

therefore as noted in Figure 1- .85 x10 /sec. The standard deviations for
range difference and range-rate are as before .56 and 3.48 x 10 3/sec

respectively. With these values, the location error is found to be about .6
kilometers. This is established by the intersection of the 0 f = 160 sec

line and a curve (not shown) of constant a.. / . = .85 x 10 -V/.00348 =R R
.0025 sec. This corresponds to the use of 16 measurements--six range-rate,

six acceleration, and four range difference. Note again that 1/16/6 also

gives an estimated error of about .6 kilometers.

2.3.3 TRILOC Performance

Extension of the previous discussions to the case wherein platform

velocity and mean frequency of the platform transmitter during an overpass are
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also estimated is not significantly different.* Instead of the relationships

given in Section 2.3.1 for X, Y determination only, each (measured-computed)

difference is now equated to the sum of five terms corresponding to two velocity

coordinates (e.g., east and north under the assumption of negligible or known

vertical velocity), mean transmitted frequency and again the two position

coordinates. Additionally, a parameter held constant in previous performance

descriptions is satellite altitude. Because of the potential variations in satel-

lite altitudes, the effects of this parameter should also be evaluated. There-

fore, discussions and data provided below are concerned with TRILOC

performance in two ways:

* The variation of platform location error with the

standard deviations of range difference, range-

rate, and acceleration measurements-the units

in this case being anticipated units of the actual

measurements to be made)namely micro-seconds for

range difference, Hertz for range-rate, and Hertz/

second for acceleration

* The variation of location' error with satellite altitude,

holding the number of platform transmissions con-

stant by increasing the interval between transmissions

for higher altitude orbits.

To evaluate the effects of satellite altitude on the location errors of

a TRILOC system, three .altitudes are considered for sun-synchronous orbits-

108 minute, 2 hours, and 3 hours. For these orbits, the number of trans-

missions during which range-difference, range-rate and acceleration are measured

Section 3.4 provides the mathematical derivation in detail, while Section
3.5 analytically describes the means by which location error is computed
as a function of measurement errors.
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is held fixed at four per overpass with two overpasses. This means there

are a total of four acceleration, four range rate and three range difference

measurements per pass or a total of 22 measurements over the two successive

overpasses. The overpass geometry for these three orbits are sketched in

Figures 2, 3, and 4.

In Figure 2, the overpass geometry for the 108 minute orbit is shown.

The platform to be located is taken to be at 00 latitude and 0 longitude and,

for the computations of the location error, has zero velocity. As noted, the in-

clination of the orbit is 1000. The successive passes are seen to be symmetri-

cally placed east and west of the platform position and the circles denote the

satellite sub-point at the eight transmissions. The transmissions are separated

by four minutes. Figures 3 and 4 provide similar information for the geometries

of the two and three hour orbits. For the conditions of these figures, little if any

geometric dilution of precision should occur in deriving location of the platform.

Figures 5, 6, and 7 present the variation of location error for a TRILOC.

system operating with the three different orbit altitudes and geometries des-

cribed in Figures 2, 3, and 4. As previously mentioned, these data correspond

to estimation of two position coordinates, two velocity coordinates and the

mean. transmission frequency of the platform. The presentation is entirely the

same as that described in Figure 1 when only platform position coordinates

were estimated from the measurements (except for the introduction of the units . -

noted).

As a first point of interpretation, the improved location accuracy of

a TRILOC system can be derived from these Figures at the three different

altitudes. This is accomplished by assuming the standard deviations of the

measurement errors are equal to those for the single-type-measurement system.

that has the performance of a one kilometer mean location error. For example,

in the case of the 108 minute orbit, Figure 5, these standard deviation asymp-

totes are .89 hertz for frequency (range-rate) measurements, and .0116 Hertz/

second for frequency rate (acceleration) measurements. In this case, a TRILOC
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TRILOC Location Errors
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'TRILOC Location Errors
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system would yield a location error of approximately .53 Km which again is

not significantly different than one kilometer divided by /2278.

The variation of location error with altitude may be determined by

comparing TRILOC systems with equal measurement errors. For example,

if the errors in the above examples are used to enter Figures 6 and 7, then

the location errors are found to be .66 Km for the two hour orbit and .81 Km

for the three hour orbit. These should then be compared to the .53 Km loca-

tion error for the 108 minute orbit.

An interesting side light of Figures 5 through 7 concerns the varia-

tions of the asymptotes-i.e., the variation of location errors for'those

systems utilizing only one type of measurement. In the case of both range-

rate and acceleration, increasing satellite altitude degrades location per-

formance. For a range rate system, the required standard deviation of error

for one Kilometer location error is 2.1 Hertz at 108 minutes and .67. Hertz at

3 hours-or, for given measurement error an increase by a factor of more

than three in location error. For an acceleration only system, this factor

of increase is about 14. On the other hand, an increase in satellite al-

titude for a range-difference-only system results in a decrease in location

error. This discrepency in location error trends with altitude for the single

measurement systems can be qualitatively justified by the following argument.

As the satellite altitude increases, the total variation of both range-

rate and acceleration during an overpass will decrease. Furthermore, the

variation in acceleration will decrease more rapidly with altitude than range-

rate. Therefore, holding.measurement errors constant result in relative pre-

cision of measurement to the variation of the quantity being measured to de-

crease-i.e., larger location errors.
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This is not true for range difference and in fact, the reverse is

true. In this case the total variation of range differences during an overpass

increase in going from a 108 minute orbit to a two and three hour orbit.

Therefore, the location error for given measurement error should decrease.

A more important aspect of these variations to a TRILOC system is

that the higher the satellite altitude,the less advantageous a TRILOC system is.

The trends suggest that at some altitude, depending upon measurement

eirors that are achievable, the location error will be solely determined by

the range difference errors-i.e., operation will be limited to the asymptote

where the standard deviations of range-rate and acceleration are very large

relative to the precision of range difference measurements.

2.3.4 TRILOC System

While the previous discussions indicate the advantages inherent in

the multiple measurements of the TRILOC concept, estimates of attainable

location precision can only be made by postulating actual mechanisms for

measuring the three parameters. To obtain these estimates, a system is

suggested in the following discussions regarding the processer on-board

a satellite capable of making the requisite measurements. From this, estimates

of actual measurement errors are determined and the data of Figure 6 is used

to evaluate location precision as a function of system capacity-i.e., number

of platforms.

The signal spectrum of this example TRILOC system is a carrier with

20 kHz sub-carriers that are modulated with data. The three parameters

necessary for TRILOC location are measured during a transmission interval as
follows:

* Received frequency and frequency rate are

computed from a least square error regression

of measured time intervals between a successive

number of positive zero crossings of the carrier

while it is tracked by a narrow band phase lock

loop
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* The range difference measurement is performed by

measuring the phase of the 20 kHz sub-carrier

relative to a standard on-board the satellite, and

comparing this phase to that measured during a suc-

cessive transmission-phase ambiguities are not a problem

in this case because the major portion of any change

in range is due strictly to known satellite motion.

To obtain estimates of the errors that can be anticipated in measuring

these parameters and the resultihg estimate in platform location precision,

several assumptions will be made.

* The significant system errors are those associated

with the measurements due to noise

* The standards on-board the satellite do not con-

tribute significant error to the measurements'

* The overall signal power to noise density ratio

is 40 dB-Hz,equally distributed between the

carrier and the coherently demodulated subcarrier

* The carrier is tracked with a 20 Hz loop and the

subcarrier is measured through a 400 Hz filter

* The measurement period for the carrier is .5

seconds and for the subcarrier is 5 milliseconds.

With these assumptions, the signal to noise ratio for the frequency

and frequency rate measurements will be 24 dB while the signal to noise ratio

for the subcarrier measurement will be 11 dB.* The phase noise in these two
channels can then be determined from

For carrier channel: phase noise variance = = .002 rad 2

2 S/N

For subcarrier channel: phase noise variance 2SN .04 rad 2
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Utilizing the regression analysis provided in Appendix F , the standard

deviations of the errors in estimatfng received frequency and its time rate

of change are

Standard deviation of frequency error, .0022 Hz

Standard deviation of frequency rate error: .0117 Hz/sec

Where the assumption is made that the nominal

frequency is 4 kHz. and the period of every cycle

is measured and used in the regression analysis

to estimate frequency and frequency rate.

Similarly, if the relative phases of 100 positive zero crossings of

the 20 kHz subcarrier (5 milliseconds measurement period in order to be able

to demodulate the data on the subcarrier during the majority of the transmission

period) are measured and utilized to estimate the relative phase, then the

standard deviation of the side tone phase measurement will be .04/100 or

.02 radians. This translates into

Range difference error =-2 x range error = -2x - x wavelength

For a 20 kHz subcarrier, the wave length is approximately 15 km so that the

standard deviations of the range difference error is approximately 70 meters.

For purposes of utilizing the data of Figure 6, this is equivalent to .23 micro-

seconds error (i.e., the case where measurement of range difference was

based upon signal transit time).

These three errors - .002 Hz, .01 Hz/sec and .23 microseconds-

coupled with the data presented in Figure 6 indicates the .002 Hz standard

deviation in measuring received frequency will dominate in the location

algorithm followed by the range difference measurement and lastly the frequency

rate measurement. Therefore, implementation of a TRILOC system versus

systems wherein only one parameter is used for location will depend upon the

relative values assigned to precise location of platforms and the number of
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simultaneous users in a system. Another equally important consideration is

the ability to service a mixture of user platforms wherein location precision is

important for some and not for others.

For those users requiring precise location, acquisition of a relatively

large number of measurements during an overpass is important. If system

capacity is limited by interference between platform transmissions, then this

increased location precision necessarily results in a reduction in system

capacity. This is particularly true for systems wherein only one location

parameter is measured during each transmission. However, in a TRILOC sys-

tem the degradationr in system capacity is much slower. Compared to the single

measurement system, a threefold increase in number of measurements is avail-

able in the TRILOC system for the same number of transmissions. Furthermore,

if the example processor previously described is implemented, then the precision

with which platforms can be located should be considerably improved compared

to current systems typified by IRLS and RAMS.

2.4 TRILOC Location Technique - Analytical

The general problem of locating a platform may be formulated as

follows: We want to compute a trajectory parameter vector x, whose elements

may include platform position, velocity, and acceleration, plus parameters

relating to transmission frequency. Parameters relating to transmission fre-

quency instabilities may include such items as the center frequency drift and

the center frequency drift rate on each satellite overpass. We take a set of

m observations, which will be denoted by the column vector z. In a Doppler

location system, for example, the jth component of z would be the (observed)

received frequency at time tj . Finally, we assume the existence of an analy-

tical model relating the trajectory parameter vector to the measurement vector,

i.e., we assume that there is a known function F'such that F (x, t ) = zj, the
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J component of Z. If the dimension (n) of x is equal to the dimension (m)

of z, we seek the vector x for which

F (x, tj) = zj (1)

for = 1, n.

In practice, however, the dimension of z often exceeds the dimension

of R , that is, there are more equations than unknowns. When this occurs, there

usually is no vector x for which Equation (1) holds for all j because there are

always some errors in the observations, and the analytical model represented

by the function F may only approximate the physical system. When the number

of equations exceeds the number of unknowns, the method of least squares

may be used to compute x.

The least squares technique consists of minimizing the following

quadratic form: r -l

In equation (2), F (x) is a column vector with components F = F(~,t), and

/ is a weighting matrix, which is the covariance matrix of the measure-

ment errors. A necessary condition for the quadratic form (2) to be a minimum

where D is the differentiation operator

The equations (3) are nonlinear and may be transcendental, making

an analytical solution difficult or impossible. However, an iterative tech-

mique (Newton-Raphson's method) may be used to solve the'system of Equa-

tions (3). If we have a sufficiently good estimate xo of the trajectory para-

meter vector, we can expand F(x) into a Taylor series in a neighborhood of

X.o0

where we have retained only linear terms.
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Equation (3) then become

To simplify the notation, let A = D(F(xo)). A is then a matrix with

elements

Equation (4) then becomes

q, JL (X(X XA0JJ 0

or

In equation (5), x - x o is the error in the estimate of the trajectory

parameter vector, i.e., the difference between the initial estimate and the

true value of the vector, provided xo is sufficiently close to x. Similarly,

z - F( o) is the error in the measurement vector, i.e., the difference between*

the actual measurement vector (z) and the value of the measurement vector

computed from the initial estimate (x~) of the trajectory parameter vector.

The solution may be iterated by beginning with the initial estimate

xo and computing successive improved estimates of x from

The solution is iterated until successive values of x remain

substantially unchanged.

2.4.1 Selection of the Trajectory Parameter Set

If three platform position components and three platform velocity com-

ponents are to be computed at each time (ti) of transmission, then each trans-

mission would have to supply at least six independent observables from which

position/velocity can be computed. In most systems, only one observable is

provided per transmission, and with the TRILOC system at most three are pro-

vided. Therefore, a position/velocity estimate at time ti cannot be obtained
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independently of a similar estimate at some different time tj. Instead, a model

of platform motion must be assumed which defines the relationship between

platform kinematic parameters at different times. Formally, the model of plat-

form kinematics must have the following form:

These equations are interpreted to mean that if the kinematic state

of the platform is known at time to, then its state at any time t may be com-

puted from the functions R, V, and A. In practice, the velocity and accel.era-

tion may be assumed to be zero, i.e., the platform is assumed to be stationary.

Alternatively, the platform may have a finite velocity but may always remain

at a constant (known) altitude. It is this second case that is usually of interest.

A platform at constant altitude may be a stationary platform on the

earth's sufface, a buoy, or a constant altitude meteorological balloon. If the

platform's altitude is constant, then one of its position components is a func-

tion of the other two, and it has no vertical velocity component. If'the plat-

form follows a great circle route, then its acceleration is a function of its

position and its velocity. Thus if the platform moves in a great circle route

at constant altitude, the kinematic subset of the trajectory parameter vector

contains only two components of position and two components of velocity.

Specifically, these components are platform position/velocity components at

time to. These components are then used to compute the renairnng position

component, and the entire acceleration vector. Platform position/velocity/

acceleration at any other time t is computed from the position/velocity/accel-

eration at time to using Equations (6).
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In addition to initial position/velocity estimates, the trajectory
parameter vector may also contain components identifying the platform trans-

mission frequency instabilities. Platform location is computed by the informa-

tion provided by the frequency received at the satellite. Location estimates

can be no better than the information on which they are based. Therefore,
unless the characteristics of the transmitted signals are known or can be com-

puted to a reasonable degree of precision, the estimates of position and velocity
will be inadequate. The instabilities can be computed by assuming an unknown
center frequency drift and, possibly, the center frequency drift rate. These
unknowns are then computed Just as the (unknown) position and velocity are
computed. The center frequency drift and drift rate can be computed for each
satellite overpass.

2.4.2 The Observables and Their Relation to the Trajectory
Parameter Vector

The TRILOC concept includes the measurement three quantities. These
are:

1) the received frequency of a signal

2) the time rate of change of the received frequency

3) the difference between the time of reception of

two signals (or successive measurements of side

tone phase).

These observables are directly related to the relative kinematics between the
satellite and the platform.

The first observable is the received frequency, fR. If the transmitted
frequency is ft, then the Doppler frequency is
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The Doppler frequency is proportional to the time rate of change of the

range between the platform and the satellite (VR):
V -s c (,e

In Equation (7), c is the speed of light, and ft is the actual transmitted fre-

quency, which is computed from

where fto is the nominal oscillator center frequency, ftB is the center frequency

bias at time to, and ft is the center frequency drift rate. VR is computed from

oI = C -C - ) ( ,-

where Rs and Vs are the satellite position and velocity vectors at time t, and

RB and VB are the platform position and velocity vectors at time t. RB and VB
are computed from the initial estimates of platform position and velocity and

Equations (6). Equation (7), therefore, expresses the observable fR as a function
of the trajectory parameter vector, i.e., all or any part of the elements of
RB ' VBo , ABo' ft and f. Each Doppler measurement produces a relationship

of the form of Equation (7).

The second observable is the time rate of change of the received

frequency. Its relationship to the trajectory parameter vector is found by taking
the time derivative of Equation (7):

Again, ft = fto +tB + ;t (t-t), and c is the speed of light. AR is the time
rate of change of the relative range rate between the satellite and the plat-

form, i.e.,
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As and AB are the acceleration vectors of the satellite and the platform.

Equation (8) then expresses the observable fR in terms of the components
of the trajectory parameter vector. There is one equation of the form (8)
for each TRILOC transmission.

The third observable is the difference in time*between the recep-
tion of transmissions( At). The time required for a signal to travel from
the platform to the satellite is proportional to the relative range (RR) between
the platform and the satellite, where the constant of proportionality is assumed to
be the' speed of light. If the time (A tt).between transmissions from the platform
is known, then the difference in relative range (ARR) at two transmissions
is proportional to the difference in time between the reception of the two
signals,less the difference in time between the transmissions:

*The use of successive measurements of side tone phase achieves the same
purpose with an entirely analogous derivation.

A possible implementation of this measurement might be a platform 'that counts
zero crossings of the signal provided by its oscillator and is programmed to send
a transmission when the number of zero crossings reaches a predetermined num-
ber Nc . If the oscillator frequency is ft then the time between transmission is
Nc/ft. We then have d 4 = c (C - Pc /P1)
or,

-- + ()+

ARR is computed from

.where RSi and RBi are the satellite and platform position vectors at time ti .
Equation (9) then relates the observable At to the elements of the trajectory
parameter vector. The number of equations of the form of Equation (9) on an
overpass is one less than the number of transmissions on that overpass. This
is because for the first transmission on an overpass there is no previous trans-
mission from which At can be computed.
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2.5 TRILOC Position Error - Analytical

In Section 2.4 the weighted least squares solution to the TRILOC
location problem was derived as

For convenience, we will write x instead of S3 and z instead of 6 i. It is
important to remember, however, that x and i are now the errors in the estimate

of the trajectory parameter vector and in the measurement vector, not the
vectors themselves. If the measurement errors are sufficiently small, Equa-
tion (1) expresses the errors in the trajectory parameter vector as a function

of the measurement errors. If \' is the covariance matrix of the measure-
ment error vector, then

co, v0) V'~ 9' Y', -' o J) ( ' ',) ) " , - "

The joint probability density function for the vector x is

i = I " p 7- p

where P = (AT-1 A)- 1 and n is the dimension of x

We want to find the expected value of the location error, i.e.,

E (x1 2 + x 2 ) where we have re-arranged the elements of R (if necessary)

so that xl and x2 are the horizontal components of platform position. Then

-- - "
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The integration is made easier by a transformation to hyperspherical
coordinates, (defined in Appendix C):

r9-t
y, := cos 9, 77" cos 9K

r= Z.

5-'

r; tw n 0 7 o B n -4.)-

k'71

- ,~~ a, f - r'7- c oJ ,

r'

The determinant / In of the transformation from (r, 81, ... , 0n-1) coordinates
to (x1 , ... , Xn) coordinates is (see Appendix C)

/ (x' ,j ') -)') I i/ Cn-
I = a7r,,...)$.,) CoJ +l

A-,

We then have .1o A "

n3(r i ris a.
.. I7I "7 . .-( J 7-'3P 0
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Using the results from Appendices D and E, the number of integrations can be

further reduced, so that

7n 77-

The symbols or 2, 2,Yk, P2, and y2 are defined in Appendix E.

A closed form solution to the integral was not found, but its value

was numerically computed-to obtain the results of Figures 5 through 7

previously discussed in Section 2o
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3.0 DIRECTIVE ANTENNAS

A directive antenna on-board the satellite may have distinct advantages

for data collection and location systems relying on random access. Two such

advantages would be the suppression of RFI.and/or the ability to reduce radiated

power from the platforms. Thirdly, becaus, these systems are limited in

capacity by interference between platform transmissions, the use of a directive

antenna may serve to alleviate this restriction also.

The analyses that are required to'determine the advantages and con-

sequences of the use of a directive antenna(s) can be divided into three categories.

Sweeping Directive Antennas

* Given that a specified number of transmissions

from each platform is required during an overpass

of the satellite,how are sweep rate and gain of

.the antenna related to the duty cycle. of the platforms?

* Given the relationship between duty cycle and

antenna gain, how does increased antenna gain

effect the probability of mutual interference

between platform transmissions?

Fixed Directive Antennas

* Determine beam shape, gain and number of beams

to achieve those advantages apparent from sweeping

antennas without the complexity of beam motion.

Antenna Size

* For those antenna gains found to be practical, what

are the nominal sizes of antennas that provide .ihe

desired gains and beam shapes?

3-1



3.1 Sweeping Directive Antennas

3.1.1 Sweep Rate, Gain and Duty Cycle

Referring to the sketch shown in Figure 8, if a satellite is assumed to
be ai a radius Rs from the center of a spherical earth whose radius is RE , then
the satellite is in line-of-sight view of all platforms within a circle on the
earth's surface defined by a cone with apex at the center of the earthwith
semi-apex angle of c where cos e = RE/Rs.

Having defined this viewing circle, the total solid angle subtended
from the satellite to the circumference of this circle defines all directions
from which platform transmissions can be received. If this solid angle at the
satellite is called A , then

AT = 2 7 (1-sin c)

This solid angle defines a reference point for comparing directive
antennas of different gain. In particular, an ideal antenna with a circular beam
whose dimensions just cover the visibility circle would have a gain of 47r/A T .As a numerical example, for a Nimbus satellite, this is an antenna with a gain
of about 6 dB.

For a single directive antenna of higher gain than 4tr/AT complete
coverage of the visibility circle will require a sweeping pattern. However,
this pattern must be time and position ordered for random access systems. In
particular, with platforms transmitting randomly in time from unknown positions
within the viewing circle, the motion of the beam cannot be such that by chance,
transmissions from a particular platform are missed throughout an overpass.
More importantly, where multiple transmissions separated by nominal intervals
of time, are necessary, the sweeping pattern becomes further restricted/ordered.

The manner in which these requirements can be satisfied is by the imposition of
the following:
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* A directive beam must dwell in any given direction
for a period of time greater than the interval between
transmissions. This assures receipt of at least one
transmission from each platform in the visibility
circle during one complete sweep of the visibility
circle by the beam.

* The number of complete sweeps of the visibility circle
must be no less than the minimum number of trans-
missions required per overpass from the platforms near
the horizon-i.e., those with minimum viewtime.

Satisfaction of these two requirements implies the following. The total view-
time divided by the minimum number of transmissions (plus one) must be equal
to the product of the number of discrete positions of the beam and the time
interval between transmissions from the platforms. Analytically, these require-
ments may be written as:

T, A_ r AG

where

Tv = period of time the platform is in view of the satellite
during an overpass

n = minimum number of transmissions which must be
received from the platforms during the viewtime TV

G = gain of the directive antenna
= (477/a) where "a" is the solid angle subtended by

the beam of the directive anrtenna.

T--= Tine between transmissions.
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In writing these expressions, several simplifying assumptions are

made. The ratio (A T/a) is the number of distinct positions of the beam neces-

sary to completely cover the visibility circle. This means, there is no overlap

of coverage from one beam position to another. Furthermore, the shape of the

directive beam is such that each beam position is equally effective in cover-

ing an area as any other beam position in terms of the projected area of

platforms .

For practical antennas, these assumptions are very optimistic in view

of the relative geometry let alone the ability to shape beams arbitrarily.

However, this assumption does place a lower bound on the number of beam

positions and therefore total time required to completely sweep the visibility

circle.

By substituting, in the previous expression, the relationship for AT is

namely

The time between transmissions can be specified as a function of the

gain of the directive antenna beam. That is:

As mentioned previously, the minimum gain antenna that can be

considered is that one which just covers the visibility circle which is

Therefore, the time between platform transmissions that assures

receipt of at least n transmissions during the viewtime T may be written as:V

Tv GminT=
(n+l) G
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Another bound on the gain, G, of the directive antenna can be derived

from this expression. While GMIN is defined by the antenna that just covers

the visibility circle, the maximum antenna gain possible is when the time

between transmissions is equal to the duration of transmissions-i.e., the

platforms radiate continuously (CW). The possible spread of the antenna gains may

then be defined as being between GMI N and the gain value GMAX , corresponding.

to CW platforms. A numerical example is interesting.

For the Nimbus orbit, the minimum antenna gain is about 6 dB. If

RAMS parameters are assumed, -i.e., Tv = S minutes, n = 4, and transmission

duration of 1 second-then the maximum (CW platforms) antenna gain is about

15 dB. Therefore, the maximum advantage of directive antennas in the RAMS

system for purposes of RFI suppression and/or decreased platform power is

about 9 dB.

3,1.2 Antenna Gain and Interference

While CW platforms establish an upper bound on antenna gain from

the viewpoint of acquiring the requisite number of transmissions, interference

between transmissions occurring in the same beam may further limit antenna

gain. To evaluate this interference, an assumption regarding distribution of

platforms is made. In particular, the platforms are assumed to be uniformly

distributed as seen from the satellite.

With this assumption, the number of platforms within the antenna beam

of solid angle "a" is Na/AT-where N is the total number of platforms within

line-of-sight of the satellite. The rate at which transmissions from within a

beam reach the satellite is then (Na/ATT)'which upon substitution of the above

expressions for T, A T , and "a" leads to:

Na (n+1)Na = N = constant
TAT  T
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The conclusion, therefore, is that the time rate at which platform transmissions

reach the satellite within a given beam is independent of the width of the beam

itself. However, this can imply increased interference with higher gain beams

as can be seen from the following.

A rough approximation to the distribution of received frequencies at the

satellite for platforms uniformly distributed on the earth is that these frequencies

are uniformly distributed over a band, FT . If interference between simultaneously

transmitting platforms occurs when they are closer than Af in frequency, and the

transmission arrival times are p6isson distributed, then the probability of a

given transmission being interfered with can be written as

P = probability of interference = 1 - e

where r is the duration of platform transmissions. Note, the same assumption

is made here, namely the number of platforms that can possibly communicate

with the satellite is Na/AT-i.e., only the fraction (a/AT) of the total number

of platforms as defined by the solid angle "a" of the antenna.

At first glance, this expression would then indicate that the probability

of interference would be reduced in direct proportion to the gain of a directive

antenna. This is true only if the other parameters remained fixed as antenna

gain is varied. However, as shown in Section 3.1, the time between trans-

missions must be inversly proportional to antenna gain in order to insure receipt

of a specified number of transmissions during a given minimum viewtime. By

substituting this time and gain relationship, the probability of interference may

be rewritten as: - 4N(n+1)7 Af
T F

P=l1-e

Assuming the probability of frequency overlap, (Af/T)), remains the same, this

expression then indicates by the lack of terms describing directive antenna gain,

that directional antennas will not influence the probability of interference be-

tween platforms.
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Regarding frequency overlap, Figure 9 indicates that the probability

of overlap depends upon the shape of the beam of a directive antenna as

opposed to the gain. This figure shows, for a platform transmitting at 401 MHz,

the locus of platform positions on the earth's surface giving rise to constant

doppler shifts in received frequency at the satellite. Also noted are the areas

encompassed by two different shaped antenna beams-one circular in shape

and the other elliptical with its major axis parallel to the satellite subtrack.

For the elliptical beam, the total range of doppler frequencies can be

seen to be about + 7000 Hertz or just about the total spectrum of frequencies

received if there were a single antenna giving complete coverage of the visibility

circle. In this case then, the ratio Af/FT -the probability of frequency overlap-

would not be expected to change significantly. Therefore, the probability of

interference between platform transmissions would be independent of antenna

gain as indicated above.

This conclusion is not true, however, for the circular beam shown

in Figure 9. The total spectrum of received frequencies is on the order of

+ 3500 Hertz or about one half the spectrum of frequencies for full coverage.

In this case then, Af/F T would be about twice the value for the elliptic or

full coverage beams and the interference between transmissions would be

correspondingly higher.

From these considerations, the use of directive antennas implies the

requirement to employ beams that are wide parallel to the satellite's subtrack

and narrow perpendicular to the subtrack. Otherwise, mutual interference

between platforms will increase monotonically with antenna gain.

Because of the rather optimistic assumptions mentioned in the

analysis of Section 3.1, it is apparent that sweeping directive antennas

cannot basically change mutual interference for random access systems.

However, other advantages are possible. In particular, the use of a directive

antenna offers at least three opportunities to:

3-9



e Maintain platform power and transmission duration constant

which, in effect, means utilizing the increased direc-

tivity of the antenna strictly as a means to suppress

interference from concentrated RFI sources-this might

be advantageous even if losses associated with

obtaining a directive beam negated any gain increase

* Reduce platform power in inverse proportion to

antenna gain in order to simplify the platform

* Reduce the duration of transmissions from platforms

in inverse proportion to antenna gain by proportion-

ately increasing platform data rates. This can be

shown for random access systems of the RAMS type to

simplify signal processing on-board the satellite.

3.2 Fixed Directive Antennas

From the analysis of sweeping antennas, the possibility of reducing

interference between platform transmissions is seen to be non-existent

because of the necessity to decrease -the interval between transmissions in

direct proportion to increased gain. Furthermore, because of the optimistic

nature of the assumptions regarding coverage of the visibility circle, a

sweeping antenna beam would inevitably result in performance degradation

in that increased interference could not be avoided as the gain increased. To

alleviate this problem, an array of fixed antenna beams might be more advantageous

However, the preferred orientation of these fixed beams may be dictated by con-

siderations other than mutual interference.

3.2.1 Beam Shape and Orientation

The orientation and shape of fixed beams will be seen to be governed

by two considerations that are conflicting.
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o From the viewpoint of satellite signal processing,

the antenna patterns should provide coverage such

that transmissions are received in a narrow frequency

band from each antenna

* From the viewpoint of mutual interference between

transmissions, the antenna patterns should provide
full coverage of the received frequency spectrum.

In essence, the shape and orientation of fixed beams is a problem of compro-
mise between system capacity in terms of the number of platforms to be
serviced and the complexity of satellite processing equipment-basically the
complexity of the signal detection function on-board the satellite.

To simplify the detection of transmissions, each fixed antenna should
be elliptical in shape with major axis parallel to the zero doppler line-i.e.,
the major axis of the beam should be perpendicular to the direction of motion
of the satellite. The minor axis of the beam's cross section will then deter-
mine the band of received frequencies from the platforms within the beam.
From the relationship for mutual interference given in Section 3.1.2, this type
of beam shape and orientation would not change the probability of interference
between platforms compared to an antenna providing full coverage of the visi-
bility circle-i.e;., the antenna will accept all those transmissions that can
potentially overlap in frequency. However, the detection process simplified
in this case because of the narrower spectrum which needs to be searched for
arriving transmissions.

On the other hand, to reduce interference between arriving transmissions
the antenna patterns should reject in a geometric sense those platforms which
give rise to similar frequencies at the satellite. This can be achieved by
orienting elliptic beams with major axis parallel to satellite motion. If the
separate beams stretch from one edge of the visibility circle to the other, then
the exponent in the relationship for determining probability of interference will
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be reduced in near proportio the. number of separate beams. However, the
detection mechanism as lated with each beam must now cover the full spectrum
of received frequenc For example, if there are equivalently m comb filters
required to detec ansmissions when a full coverage (single) antenna is used,
there will be. 'comb filters required when there are b separate beams involved.

To analytitally evaluate these two orientations of fixed beams, several
assumptions analogous to those used to analyze the sweeping antennas will be
made. First of all, the band of frequencies received from an antenna is
assumed to be proportional to the angular width of the antenna in the direction

parallel to the motion of the satellite. Secondly, the number of platforms

within a given beam is, as before, assumed to be proportional to the solid

angle of the antenna beam.

With these assumptions, the probability of interference may be
approximated by

where

&.t. is the angular width of the beam cross-section

perpendicular to the motion of the satellite

a is the angular width of the beam cross-section

parallel -to the motion of the satellite

so that AT is the solid angle subtended by the

visibility circle of the satellite as before

but approximated by a square in this

expression whose sides are (ir/2-c).
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* Ct is the fraction of the N platforms within

the viewing -circle contained within the

beam of the antenna

U11 /(nr/2-) is the fraction of the .total band of frequencies,

FT , received at the satellite that will be con-

tained within the beam of the antenna.

From this expression, the probability of interference is then only a function of
the width of the individual beams in a direotion perpendioular to the motion of

the satellite-i.e., the a% terms cancel. Therefore, for the case where beams

have major axes parallel to satellite direction of motion and equal to (17/2- C),
the probability of interference may be written as

Weut- 21

where b is the number of beams.

3.3 Size of Directive Antenna Arrays

The half power beamwidth of a directive antenna array can be related to
size by means of the approximate relationshi (her e is theh-alf
power beamwidth in degrees, X, is the wavelength of the operating frequency and
L is the necessary antenna size perpendicular to the plane within which 0 is mea-
sured. With this relationship and assuming an operating frequency of 400 MHz (.75
meter wavelength), the maximum antenna dimension is .32b where b is the num-
ber of antenna beams of the fixed type recommended in Section 3.2. Note,
this last relationship is obtained by assuming a low altitude satellite (Nimbus
or Tiros) wherein the total angle which must be covered by the b beams to com-
pletely cover the visibility circle is about 120 degrees. As an example then, if
there are three equal width antenna beams to each side of the satellite subtrack
(i.e., b = 6), then the maximum dimension of the antenna arrays will be nearly
two meters.

* Reference-Koelle-Handbook of Astronautical Engineering, page 16-42,

McGraw Hill, 1961.
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APPENDIX A

PARTIAL DERIVATIVES OF THE MEASUREMENTS

Section 2.4 shows how a platform may be located using an iterative

technique for solving certain non-linear equations. Section 2.5 showed how

the mean location error may be computed from the measurement errors. Both

of these computations involve the use of the partial derivatives of the mea-

surements with respect to the trdjectory parameters (e.g., equation (5) of

Section 2.4 and equation (1) of Section 2.5). These partial derivates are

computed in this Appendix.

A.1 With Respect to Transmission Instabilities

A.1.1 Doppler

In a Doppler location system, the received frequency (fR) is measured.
The relationship between the received frequency fRi at time t i and the trans-

mission instabilities is

where fti is the frequency transmitted at time ti, c is the speed of light, and
Vri is the time rate of change of the distance between the platform and the
satellite at time ti . The transmitted frequency, fti, is approximated by

where fto is the nominal transmission center frequency, ftB is the center fre-
quency drift, ft is the center frequency drift rate, and to is a reference time.
The reference time to may be chosen as the time of the first transmission on
an overpass. In the case of a multiple overpass geometry, the frequency drift
and drift rate may then be computed for each overpass.

The partial derivatives of fRi with respect to ftB and it are
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A.1.2 Doppler Rate

In a Doppler rate location system, the time rate of change of the

received frequency (fR) is measured. The relationship between fR at time ti

and the transmission instabilities is
0: . _

dVr i
where ARi dt is the radial acceleration between the satellite and the

platform. Then

o--

A.1.3 Range Difference

In a range difference location system, the difference in time (At)

between received transmissions is measured. The relationship between At i

at time ti and the transmission instabilities is

9--

where ARRi is the difference in range at times ti and ti-l and No is the number

of cycles between transmissions. Then
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- - -

A. 2.0 With Respect to Platform Kinematics

Define the following symbols:

1) RBi, VBi, ABi - platform position, velocity, and acceleration

vectors at time ti

2) RSI, VSi, ASi - satellite position, velocity and acceleration

vectors at time ti

3) RRi, VRi ARi = relative range, relative range rate, and

relative range. acceleration at time t .

Platform position, velocity and acceleration at time ti are functions

of the initial state of the platform, i.e., its position/velocity/ acceleration

at time to:

-hr

e- V Co > V80. OQ -

Each component of all vectors R~ ,VB, and AB are functions

of each component of the vectors RBo, VBo, and ABo. It is the initial state of

the platform that is to be estimated. It will be convenient to use the notation

* to denote a component of the initial state of the platform. For example,
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would refer to the partial derivitive of platform position with respect to RBxo
when * = RBx o , with respect to RB y o when * = RBy o , etc.

A.2.1 Doppler

The relative range rate is

- ( vS - v) - ( . - fe e.

The partial derivatives of VRi are

A-4
dig - -
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A.2.2 Doppler Rate

The relative range acceleration is

( 4,-A ,,") (/ '',/ - VA .

The partial derivatives of ARi are

I-

SL Ve ( VS V8

then

A.2.3 Range Difference

The relative range at time t i is
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The range difference is then

,. e , / ! J, , ,

The partial derivatives of RR are

then
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APPENDIX B

MODEL OF PLATFORM MOTION

This Appendix presents the model of platform motion used in the

TRILOC location error analysis. In this model of platform motion, the plat-

form is at constant altitude with an initial horizontal velocity (which may be

zero) and an initial horizontal linear acceleration (which may also be zero).

This model approximates a great circle trajectory. The following symbols

are defined as:

P, V, A - platform position, velocity, and acceleration

at time t.

Po, Vo,Ao - platform position, velocity, and acceleration

at time to.

6t - t-t o

C - platform altitude (constant)

Then

Le

Ve P,
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The partial derivatives of P, V, and A with respect to the components

of Po , Vo , and Ao are

.A

0

" P a o

-a _ ----- "----- .a =.--.-.-- .

...... ... .V-o . ... -- -o- -- " -.-- --- ---- P --o----

o 
.. Py 

.-- " -B -- - .... . -  --. ... ............ . ..... ..

-B-2

(-_.__ PV~>~ o -~----- 
----.- .- 

---- - -

p ----- ---- --- ~.-~~--- - . -- --



a
--- -r -

E -.---....-- ...

- _ -*P .- _ ' ....

____a , --F 4 ~,-d1, -"P;; - PL ';- PxV . - . .,

.-- __. a o .. --.-

oo 0

a, a p4 -

-To ----- Via.

The derivatives of P, V, and A with respect to Pxo, Vxo, and Axo are zero.

B-3



APPENDIX C

n DIMENSIONAL HYPERSPHERICAL
COORDINATE TRANSFORMATION

In Section 2.5 the expected location error was written as a multiple
integral. It was stated that by performing a transformation from Cartesian
coordinates to hyperspherical coordinates the integration could be performed
over all variables except one, i.e., the multiple integral could be raducod
to a single integral. This Appendix defines the hyperspherical coordinate
system and evaluates the determinant of the Jacobian of the transformation
from hyperspherical coordinates to Cartesian coordinates.

Define a transformation from n dimensional hyperspherical coordi-
nates (r, 91, . .. , 6n-) to n dimensional cartesian coordinates (x, . .. , xj)
as follows:

... .............. .... .. .o.......

C-n-



The inverse transformation is

-. __

.......... .- -..-. .. . ....- -4 --- 7

The range of the hyperspherical coordinates is

- .-7 . " . ..7 7 . . .

The Jacobian Jn of the transformation is the matrix

C-2. . . ....
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We want to show that the -determant of IJ is

Hi--n /r . T  r 4 .

For n =3, we have

and

Therefore, the formula holds-for n = 3.

C-3.... . . . .. . s .... . _ . ,_ ._-

.. ...- *--.- r , . .c.__ _' . '. . _. ..

. .. -. . -. . 7 "CO ' & , ...... -.. . .

Therefore, the formula holds for n - 3.

C-3



Now suppose

fn;.
r 7/ Jn.i = r -Tc o-s 'p ,

~l'

for n-i ., 3. Define

-. 7r......-....... ......... , -- .r. c- - --.s / .TT.. .o-,

-- Then x i = Yi cos On-1 for i s n-i and xn = r sin n-1. The transfor-

mation from (r, 61, * * * n-2) coordinates to (Y1 ' ' Yn-1) coordinates

is an (n-1) dimensional hyperspherical coordinate transformation . Therefore,

.. . r 77- co "

K---L

- --- - - - - - - -- . i / - -

ORIGINAL PAGE IS
OW POOR QUAL=T
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If we let e * Jn
fIIf

1 -*I .. *

then for i ! n-1,

. . -a ... r c ~,_

. . . . . . . ...... . .. . - 5. ... . . . . . -. -

.d .... ..... . ....x -- . ..o. 
- .

- y/ -
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We then have

..I / cs , I,- .. *.. . 9n..., a#.; . , .. . -- r._ / .ra , y / , . .....

al.... ..... ....coJ 4n-Lco .-. . -/

., c . .. ..... ., .,. ... . . . 4 ,, .. , .S e- 6.

.. S 5n - j .. rCq r n-, , C .-. o .

." an . .?.
" - a .• ... . -. . . . . . . ... - .

This determinant is easily evaluated by observing that the cofactors of

of the first two elements of the last -row are

1) the cofactor C1 of sin 8n-1 is

.. ./-.-.-- , - -r Sir, ,I n-, ... I-r-. o , ... , JC~ ,

r f -A
.... ,. .-. /.. ......... ....... .'L * r ./ CO 6,
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.AP7, . . a fl,,, O n. ,O , , -J

- . .. . o ., . . on

2) The cofactor of r cos 8n-1 is

.t,k c o, - ,, cos -,. , . ,-

r

--- . ........ . ... ......... "

_/ .__ _ ;_ _, , ., _ _ ,. _ .. ; . _ _ _

I n GM- -

The determant of Jn is

IJ, = C, sn 0, + c . rcos&,,.,

O O1INAL pAGO IS
jo POOQ C-7



We then have

. -------. , ---- -,--------

P CI77 4 Co-

Thus wq have shown by induction that

Sn- r

n- "< 77 co> e ,--3

Thus we have shown by induction that

for all n - 3.
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APPENDIX D

cos 6' /
Evaluation of

-7/t.

The mean location error was written as a multiple integral in Section
2.5. In Appendix E the multiple integral is reduced to a single integral.
Beginning with en_ 1 , the integration over each e leaves an integral of the
form

where a, f, and X are functions only of 1 , ea , and eJ- 2 . The integral D-1
is evaluated in this Appendix. This result is then used in Appendix E to com-
pute the mean location error.

Note that

'7/ t

-0

For convenience, we shall denote the integral to be evaluated by I (8).

D-I



Let t- = "

Then

I

t = 0 when 8 = 0 and t =owhen 8 = 1/2.

Then -

S.......

------------ ~ ~ ,----..-.-----/---£-.-'-------F f- -- ----'

-- --- - .
Now let

..... . .. ... ... ... .... -- - . -- -- -... . .. ... .. . ... . . . . . ....... .. ... .. .

S..&

.= ......... D-2

D-2



Then

.- ._. .. . .. .. = 2__._ _-_, 0_

2 t'L

=- and v = when t = 0, and u ='v =
Sa

Then

_o oJ,

-- ~''- ~---'~--u-- -~~~~~------ - --- dvt

-.-- 77 [u _ r 1S. ... --- .......

D-3[V7 -
v - .-..--- V- ------- -- D ->

._... .- ... .. .. .... .. .. + _ - .' " . _
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APPENDIX E

Tr/I 7r/z

Evaluation of . . . - r
7/-Z. -7r/Z

In Section 2.5 the mean location error was written as a multiple
integral. This Appendix shows how the multiple integral is reduced to a
single integral. No analytic expression for this single integral was found
but its value can be numerically computed.

-

"Thus P is an n x n dimensional matrix.and y is an n dimensional column vector.

Define

and
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Then for =, , 4 e

d , -- -- " J--- - ------- --

and
~1.

A. . - -- " . ... .. .. .. . ..

Cos -- - --- -- -~~ 6 -... .s-'-,7 -

where

That is, Pj is a j x J dimensional matrix. Pi is the (j-1) x (j-1) dimensional

matrix derived from P1 by striking out the jth row and the jth column of P1 .
-. thr, is a (j-1) dimensional row vector which consists of the j row of Pi, but

without the jth (last) element of that row. ?j is the jth element of the jth

row of P. Yj is a j dimensional row vector such that

1) Yn = y

2) j-1 is computed from yj by striking out the last element

of yj and dividing the remaining J-1 elements by cos 9j- 1 .

Dashed lines in the expressions above are.used to indicate partitioned matrices

and partitioned vectors.
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Then, if 3 j < n, we have

. ....... 7

:

- -'~3 [ - I

P  ' ; ( ' c s s. , , s , - - . -2 .

Note that ) and re scalars

I *

O-IGNA, PAGE -q
oW Poo .QRAIT
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We then have

- -

-Z -

We now want to show that

17-- --- "r-.. " - -.. ._Z. .... ... ...... .

-~7 -7, CS ' -

--------------------------- - -,---

.. . .. . .. .. . . . . - .. ..

ORIGINAL PAGE L
OF POOR QUALTM
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Let n = 3. Then (see Appendix D)

e/ Cz L co o 2,r/T

.. -.... -. or) CJ._ - 'i. _ ,---J. _.

-. 7-

iJ7 7 ........ ... ........-- ... - --- -

1 .- § --./-

... ......... ... .I ] i.~-- .--- :--- --̂~-" ..... -I" -- ~" -"---

Therefore, the formula holds for n = 3. Now suppose it holds for n - 1 2 3.

Then
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7 C- r/.,.j
- . .L Co &.. . 'rJ

iC .
7/ - /.

-- f"7"- ,-----

-7-17-

Thus we have shown by induction that the formula holds for all n a 3.
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APPENDIX F.

MEASURING FREQUENCY AND FREQUENCY RATE

This appendix describes one technique whereby the frequency received

by a satellite and its time rate of change can be estimated and determines the

precision to which these two parameters can be measured. The basic assumption

throughout the analysis is that white noise is the only error source corrupting

the measurements.

The measurements from which frequency and frequency rate are esti-

mated are the series of elapsed times between positive going zero crossings of

the received frequency (after down converting the r.f. signal to several thou-

sands of Hertz). For present purposes, the resolution and precision of these

time interval measurements is assumed to be much smaller than the equivalent

phase jitter of the signal itself as caused by noise.

Assuming the received frequency is varying linearly with time, then

the period of time (Ti ) between i positive zero crossings can be related to

frequency (w) at a given point in time and the time rate of change of frequency

{() by
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If perturbations are taken from this equation, then the errors in a, w, and Ti

(6 ~, 6 w, 6Ti) are related by

or for an ensemble of measurements of T, this may be written in

matrix notation as

where for the ith measurement

Aw

With k>2, the errors in 6 w and 6c can be determined if the solution

for w and ct is assumed to be based upon least square fitting or regression.

In this case, the solution is

F, (AA)'ArST

By assuming the 6 T's are independent (which they are not strictly speaking) of

zero mean and equal standard deviation of aT , then the covariance matrix of

6 x becomes
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This relationship can be used then to evaluate the standard deviations

of w and x (namely a and ac,) as a function of w and a. This has been done by

means of a computer program with the following results.

With frequencies (w) and frequency rates (a) between 1 to 10 kHz and

2 to 100 Hz/sec, the standard deviations of frequency and frequency rate are

essentially independent of frequency rate and approximately proportional to

reciprocal of the square root of the frequency itself when measurement duration

is fixed. For a duration of .5 seconds,

where f is the nominal or average frequency in units of kilohertz and aT is
replaced by the relationship between signal to noise ratio and frequency -

0o-. for w in radians/sec

F-3


